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Realistic Constrained Multi-Objective Optimization
Benchmark Problems from Design

Cyril Picard and Jürg Schiffmann

Abstract—Multi-objective optimization is increasingly used in
engineering to design new systems and to identify design trade-
offs. Yet, design problems often have objective functions and
constraints that are expensive and highly non-linear. Combina-
tions of these features lead to poor convergence and diversity loss
with common algorithms that have not been specifically designed
for constrained optimization. Constrained benchmark problems
exist, but they do not necessarily represent the challenges of
engineering problems. In this paper, a framework to design
electro-mechanical actuators, called MODAct, is presented and
20 constrained multi-objective optimization test problems are
derived from the framework with a specific focus on constraints.
The full source code is made available to ease its use. The
effects of the constraints are analyzed through their impact on
the Pareto front as well as on the convergence performance. A
constraint landscape analysis approach is followed and extended
with three new metrics to characterize the search and objective
spaces. The features of MODAct are compared to existing test
suites to highlight the differences. In addition, a convergence
analysis using NSGA-II, NSGA-III and C-TAEA on MODAct and
existing test suites suggests that the design problems are indeed
difficult due to the constraints. In particular, the number of
simultaneously violated constraints in newly generated solutions
seems key in understanding the convergence challenges. Thus,
MODAct offers an efficient framework to analyze and handle
constraints in future optimization algorithm design.

Index Terms—Multi-objective optimization, constraint han-
dling, evolutionary algorithm, real world problems, test suites.

I. INTRODUCTION

ENGINEERING design problems often imply making a
compromise between conflicting objectives (cost over

robustness, weight over size) under a set of strict specifi-
cations. As such, they can easily be written as constrained
multi-objective optimization problems (CMOPs), formulated
as follows:

min
x∈S

f(x) = [f1(x), f2(x), ..., fm(x)]
T

subject to gj(x) ≤ 0, j = 1, 2, ..., p

hk(x) = 0, k = 1, 2, ..., q

(1)

where f : S → Rm is a vector of m objective
functions that map the bounded search space (or design
space) S to the objective space. The search space is de-
fined by lower x(L) and upper x(U) bounds such as
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S = {x ∈ S | x(L)i ≤ xi ≤ x(U)
i , i = 1, 2, ..., n}. The spec-

ifications are represented by p inequality and q equality
constraints. For a solution to be said feasible, it needs to satisfy
all p + q constraints. The set of all feasible solutions forms
the feasible space F ⊆ S.

With respect to the definition in (1), engineering problems
are not different to commonly used benchmark CMOPs [1],
[2]. In practice though, their objective functions and con-
straints are expensive to calculate, offer no continuity guaran-
tees and their behavior is unknown a priori (simulation-based
results). These properties can make engineering problems
challenging to solve.

Multi-objective optimization problems can be solved using
stochastic meta-heuristics, of which multi-objective evolution-
ary algorithms (MOEAs) have been widely applied. Yet, most
of the available algorithms have been developed primarily for
unconstrained optimization problems [3] and are extended by
constraint handling strategies to cope with CMOPs [4]–[6].

A. Nature of the issue

Recently reported results show that for some ordinary
mechanical design optimisation problems, state of the art
constrained optimization algorithms fail to ensure sufficiently
reliable optimization outcomes [7], [8], although the same
algorithms show good results on benchmark problems. Indeed,
the latter have been found to have one or more of the following
shortcomings:
• are too simple and can be solved by algorithms disre-

garding constraints [9];
• offer limited scalability of search space and number of

objectives;
• are limited to one or two inequality constraints;
• cannot be adjusted in terms of the complexity of the

constraints.
In addition, these benchmark functions have not been exten-

sively characterized. Most often, only information about the
number of variables, the number of constraints, the optimal
Pareto front and the feasability ratio (FsR = ρ = |F|/|S|) is
given. While the latter is often thought to be related to the
complexity of the problem, recent work shows that this metric
is not per se sufficient [9].

B. Goals and objectives

This work presents a new generic framework used to design
geared electro-mechanical actuators, called multi-objective de-
sign of actuators (MODAct), which is used to derive a realistic
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multi-objective optimization test suite, focused on constraints.
The functions are scalable in terms of decision space, number
of objectives and number and type of constraints. In order
to better understand how this test suite differs from existing
benchmark problems, a constraint landscape analysis approach
is applied and extended with three new metrics to give in-depth
information on the features of these functions. Two common
algorithms – NSGA-II [10] and NSGA-III [11] – are compared
to a constrained optimization specific algorithm C-TAEA [12]
to define a baseline convergence pattern. The effects of the
constraints on convergence are discussed.

C. Scope of the paper

Existing CMOPs are presented in Section II along with con-
straint landscape analysis tools. Section III introduces the de-
sign framework along with 20 new benchmark functions based
on a realistic mechanical design problem. Section IV details
the extended methods applied to characterize these functions.
The parameters for the constraint landscape analysis, as well
as the ones used to run the comparative convergence study
against other benchmark problems are presented in Section V.
The results of both studies are reported in Section VI along
with a discussion about the difference between the new design
problems and existing benchmark CMOPs.

II. RELATED WORK

A. Constrained multi-objective optimization benchmark prob-
lems

Various CMOPs have been proposed over the years. Some
of the oldest are the SRN [13], the TNK [14] and the OSY
[15] functions. They have been commonly used to benchmark
algorithms [10], [16]. These are two objective problems with
few decision variables – two for SRN and TNK, and six for
OSY – and the same number of inequality constraints. Mostly
due to the low dimensionality of their decision space, their
complexity is low [17].

Based on this observation, Deb et al. proposed a new
scalable framework for CMOPs [17]. Functions derived from
this framework have, in theory, an unbounded dimensionality
and their complexity can be adjusted by the selection of a
helper function. This framework has been used to derive the
CTP test suite [17] with 7 functions (CTP1 to CTP7), which
are typically limited to two objectives, two decision variables
and one or two inequality constraints and remains therefore
quite simple. The framework is also the base of the CF test
suite [2] created for the IEEE CEC2009 MOEA Competition.
Compared to CTP, CF problems have a larger search space
(n = 10) and three out of the ten functions have three
objectives. The results of the competition showed that some of
these functions are difficult to solve. The number of constraints
is also low (two inequality constraints). More recent variants
of this framework have been proposed (e.g. NCTP [18]), but
the shortcomings mentioned previously remain.

With the need to solve optimization problems with an
increasing number of objectives, many-objective optimizers
have been developed along with appropriate test problems.
The DTLZ test suite [19], which is scalable also in terms of

objectives, has been extended with constraints to form the C-
DTLZ test suite [1]. There are three inequality constraint sets
(C1, C2 and C3) that can be combined with the unconstrained
DTLZ functions (e.g. C1-DTLZ1 or C1-DTLZ3). C1 and C2
types add one constraint, while the C3 type adds one constraint
per objective. While promising, Tanabe and Oyama showed
that even algorithms discarding the constraints could solve
some of the C-DTLZ problems [9].

In order to represent real-world problems better, Ma and
Wang proposed a new framework to build test functions with
more inequality constraints and a large infeasible search space
[20]. They derived the MW test suite with 14 instances with
up to four inequality constraints and an FsR very close to zero.
Three instances are scalable in terms of objectives and they
cover various front geometries.

The DAS-CMOP and DAS-CMaOP test suites [21] intro-
duce the concept of tunable constraints through a difficulty
triplet (η, ζ, γ), with η, ζ, γ ∈ [0, 1]. DAS-CMOP is composed
of nine base problems with two or three objectives and 11 or
7 constraints. DAS-CMaOP adds another nine base problems
for m > 3, extending the WFG framework [22] with 2m+ 1
similarly tunable constraints. 16 given difficulty triplets are
suggested, four of which result in equality constraints. In total,
this generates 288 test functions, 144 of which are scalable
in terms of objectives. This massive test suite offers a great
potential that has yet to be evaluated.

Given the strong ties between optimization and engineering
applications, real-world like problems have also been proposed
as benchmark problems [1], [6], [7], [23], [24]. Among those,
the car-side impact [1] and the water problem [6], [23] have
more than two objectives. Their decision space is relatively
small, but they have a large number of constraints (10 and
7 respectively). It has been shown, however, that most solu-
tions generated during optimization only violate one of the
constraints and that unconstrained NSGA-II could also solve
them fairly well [9].

Based on these considerations, the following benchmark
CMOPs have been selected for this study: the CTP and CF
functions to allow for comparison with prior work, the recent
MW test suite and a subset of DAS-CMOP with the hard
difficulty triplets 9, 10, 11 and 12 and the car-side impact and
water problems as existing real-world like problems. They are
summarized in Table I.

B. Constraint landscape analysis

The complexity of CMOPs is often discussed using the fea-
sibility ratio, the number of constraints and some descriptive
adjectives (e.g. multi-modal, non-linear, rugged, active,...) [9],
[16], [25]. The limitations of these means to characterize com-
plexity has already been suggested by various researchers [9],
[26]. With C-DTLZ, Jain and Deb [1] proposed a classification
scheme for constraints based on the changes they introduce
with respect to the unconstrained problem:
• Type-1 constraints introduce an “infeasible barrier” in the

objective space, but the Pareto front is not affected.
• Type-2 constraints make a part of the unconstrained

Pareto front infeasible.
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TABLE I
NUMBER OF OBJECTIVES, SEARCH VARIABLES AND CONSTRAINTS OF THE
SELECTED BENCHMARK CMOPS ALONG WITH THEIR FSR – CALCULATED

AS EXPLAINED IN SECTION IV

m n p q FsR

CTP1 2 2 2 0 0.997
CTP2 2 2 1 0 0.990
CTP3 2 2 1 0 0.989
CTP4 2 2 1 0 0.967
CTP5 2 2 1 0 0.989
CTP6 2 2 1 0 0.493
CTP7 2 2 1 0 0.643

CF1 2 10 2 0 0.521
CF2 2 10 2 0 0.994
CF3 2 10 2 0 1.000
CF4 2 10 2 0 0.503
CF5 2 10 2 0 0.512
CF6 2 10 2 0 0.307
CF7 2 10 2 0 0.319
CF8 3 10 2 0 0.004
CF9 3 10 2 0 0.160
CF10 3 10 2 0 0.000

MW1 2 15 1 0 0.000
MW2 2 15 1 0 0.000
MW3 2 15 2 0 0.000
MW4 ≥ 3 12 +m 1 0 0.000
MW5 2 15 3 0 0.000
MW6 2 15 1 0 0.000
MW7 2 15 2 0 0.000
MW8 ≥ 3 12 +m 1 0 0.000
MW9 2 15 1 0 0.000
MW10 2 15 3 0 0.000
MW11 2 15 4 0 0.000
MW12 2 15 2 0 0.000
MW13 2 15 2 0 0.002
MW14 ≥ 3 12 +m 1 0 0.000

DAS-CMOP3 9 2 30 11 0 0.334
DAS-CMOP3 10 2 30 11 0 0.000
DAS-CMOP3 11 2 30 11 0 1.000
DAS-CMOP3 12 2 30 11 0 0.000
DAS-CMOP6 9 2 30 11 0 0.333
DAS-CMOP6 10 2 30 11 0 0.000
DAS-CMOP6 11 2 30 11 0 1.000
DAS-CMOP6 12 2 30 11 0 0.000
DAS-CMOP8 9 3 30 7 0 0.111
DAS-CMOP8 10 3 30 7 0 0.000
DAS-CMOP8 11 3 30 7 0 1.000
DAS-CMOP8 12 3 30 7 0 0.000

Car-side impact 3 7 10 0 0.181
Water 5 3 7 0 0.920

• Type-3 constraints make the full region of the uncon-
strained Pareto front infeasible and the location of the
Pareto front is governed by the constraints.

While, this classification and other similar ones [20], [21] offer
insights into the effects of the constraints in the objective
space, they do neither quantify these effects nor do they
consider the changes due to the constraints in the search space.

In recent work on constrained single-objective continuous
and combinatorial optimitzations, Malan et al. [26], [27]
propose to look at the constraints as defining a “violation
landscape” that can be analyzed much in the same fashion as
the fitness landscape. This landscape can be described in the
search space using the FsR and the ratio of feasible boundary
crossing (RFB×) and in the objective space with the fitness
violation correlation (FVC) and the ideal zone (IZ) metrics.
The definition of these metrics is given as follows:

• The RFB× measures the proportion of steps, which imply
crossing the feasibility boundary on a progressive random

walk [28] through the search space and quantifies the
disjoint nature of the feasible space.

• The FVC is the Spearman’s rank correlation between the
fitness and the constraint violation CV (2), measuring the
contradiction between the objective and the constraints.

• The IZ quantifies the proportion of points present in
the good unconstrained fitness, low violation zone of
the fitness-violation plot and represents the likelihood of
finding points in that zone.

CV (x) =

p∑
j=1

〈gj(x)〉+

q∑
k=1

|hk(x)| (2)

with 〈α〉 =

{
α if α > 0

0 otherwise
(3)

Malan et al. [26] applied this approach on the constrained
single-objective optimization problems of the CEC2010 com-
petition [29] and were able to link the achieved performance
of the competing algorithms to the score of these metrics.
Thus, they show the potential of this method to better charac-
terize problems and partially address the algorithm selection
problem.

While the FsR and the RFB× can be translated directly to
multi-objective optimization (MOO), the FVC and IZ require a
single numerical fitness value, which is ambiguous in a multi-
objective context. Two alternate metrics adapted to multi-
objective problems will be presented in Section IV.

III. ELECTRO-MECHANICAL ACTUATOR DESIGN
FRAMEWORK

Electro-mechanical actuators are systems composed of an
electric motor and a gear box that are used in numerous
applications to rotate other components either in a position-
control setup or for motion generation. Their wide application
range, the various competing design objectives and the severe
constraints make them well adapted to derive realistic bench-
mark CMOPs.

In this section, the general principles of the parametric
design of electro-mechanical actuators are presented along
with the derived test suite. While the developed framework
(MODAct) resolves accurate domain-specific equations, no
domain knowledge is required to use it. The Python source
code of MODAct is made available to the community1 and
offers various generic interfaces (Python, C++, MATLAB) to
be coupled to any optimizer. The evaluation of one solution
(objectives and constraints) takes approximately 20 ms on a
regular laptop, making it fast enough for regular benchmarking
approaches. Thus, the derived optimization problems could
also be of interest to researchers working on parallelization
schemes or distributed algorithms.

A. Actuator design overview
In this context, an electro-mechanical actuator is a system

composed of a stepper motor, k stages of spur gears (one stage
is composed of a pinion and a wheel) and a housing to hold
the components, see Fig. 1.

1https://github.com/epfl-lamd/modact
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Fig. 1. Schematic representation of a two-stage actuator with its design
variables and key dimensions (side and top views)

An actuator is modeled by a chain of k + 1 components.
Each component is linked to: 1) a physical model that predicts
its output speed and torque and component specific constraints,
2) a cost model ci, and 3) a geometrical model, which is used
to create 3D meshes of the components and the assembled
system. Objectives and constraints can be formulated on
outputs of the physical or cost models or queried on the
geometrical models. This modular approach allows to easily
extend the framework and build new benchmark functions.

Regarding modeling, the stepper motor’s performance are
calculated assuming steady-state operation [30, eq. (5.14)] and
the parameters defining the motor θ can be chosen among five
possible parameter combinations from existing commercial
two-phase stepper motors. The stator coil windings can be
further adjusted by scaling the fill factor FF or the resistance
Rscale. All motors are represented by a cylindrical mesh
with the diameter and height corresponding to their actual
dimensions. Their cost is composed of two parts: a fixed
contribution and a variable part adjusted according to the
selected windings.

The gears are modeled as standard ISO steel gears, charac-
terized by their number of teeth Zi{1,2}, profile shift xi{1,2},
module mi and thickness bi. Dimensions, kinematics and
mechanical stresses are calculated using the ISO norms relative
to spur gears [31]–[33]. A cylindrical mesh is used to represent
the gears in 3D. The cost is estimated based on the volume
of the gears.

The rotational speed and torque acting on each component
are calculated sequentially starting with the motor. The energy
flow between components is considered to be perfect (no
losses, perfectly rigid connections). For a given input condition
(supply voltage Um, maximum current Imax and desired

output rotational speed ω), it is possible to calculate the torque
T at the output. A set of supply voltage, current, desired speed
and torque forms an operating point. The deviation from the
desired torque at the output is called the torque excess.

The 3D position of the gears is specified by two decision
variables for each gear stage: a translation di along the shaft
and an angle γi between pinion and wheel (see Fig. 1).
The meshes are generated and handled by Trimesh [34].
The combination of all meshes is then used to detect inter-
component collisions and to calculate the size of the bounding
box of the system. Finally, its convex hull serves as a housing
and assuming a fixed wall thickness, the required material cost
chousing is added to the total cost.

Using this modeling approach, the design goal consists in
finding a set of suitable motors and gears operating at specified
operating points, while respecting a set of constraints such as
mechanical integrity of the gears, proper spatial configuration
or limited space requirements.

The search space corresponds to the combination of the
design space of each component (motor, spur gear 1, spur
gear 2,...). Both the spur gears and the motors have integer
decision variables, but, in order for MODAct problems to be
solvable by a larger set of algorithms, these integer variables
are combined with related continuous variables into a single
number where the integer part codes the integer variable and
the fractional part is mapped to the other variable:
• the motor selection variable and the fill factor of the coils
FF form the variable mFF ;

• the number of teeth Zi{1,2} of a gear and its profile shift
xi{1,2} form the variable Zxi{1,2}.

With this transformation, the search space is continuous and
has a scalable size of n = 2 + 6k.

B. Selected problems

Using the presented framework, a set of 20 problems is
built with objectives and constraints directly taken from an
industrial application studied by the authors. All problems
aim at finding actuators with k = 3 stages that have their
performance tested at two operating points, Table II. The
design problems are constructed around a set of up to five
objectives, associated with a capital letter:
• minimize total cost (C)

min
k∑
i=0

ci + chousing (4)

• maximize minimum torque excess for each considered
operating point j (T)

max min
j∈{1,2}

∆Tj (5)

with ∆Tj = Tj − Tdesired,j
• maximize harmonic mean of the safety factors to bending
SF and to pitting SH for all gears (S)

max

(∑k
i=1 S

−1
F,i + S−1H,i
k − 1

)−1
(6)
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TABLE II
OPERATING POINT REQUIREMENTS FOR ALL MODACT PROBLEMS

# Rotational speed Desired torque Voltage Max current

1 1.35 rad/s 0.6 N · m 9 V 2 A
2 0.3 rad/s 1 N · m 12 V 2 A

• maximize electrical to mechanical energy conversion ef-
ficiency (E)

max min
j∈{1,2}

ωjTj
UmIj

(7)

• minimize transmission ratio (I)

min
k∏
i=1

Zi,2
Zi,1

(8)

Based on combinations of these objectives, five problem
classes are devised: CS, CT, CTS, CTSE, CTSEI. In practice,
cost is essential for such products, while other objectives
depend upon the application. For example, the analysis of
the trade-off of available torque is important for designing
different variants of a series of actuators and the minimization
of the transmission ratio is related to the level of emitted noise.

Further, the framework considers a total of 11 constraints
which can be added to these problem classes. The imple-
mented constraints are very common for the considered ap-
plications and objectives, and are grouped into five general
categories:
• gear constraints (sufficient contact ratio, limited sliding

speeds, no interference, sufficient mechanical strength in
bending and pitting)

• minimum torque excess over all operating points
• upper limits on bounding box dimensions (bby ≤ 50 mm

and bbz ≤ 35 mm)
• distance from the output shaft to a desired coordinate

within 5 mm
The constraints are grouped to form four levels of constraint
complexity (1, 2, 3 and 4), which are useful at different stages
in the development process of an actuator (early stage: levels 1
and 2) or representing different application specific constraints
(levels 3 or 4). Each level can then be combined with any of the
problem classes (combination of objectives). This enables the
generation of 20 benchmark problems, which are named using
the names of the objectives and appending the number of the
constraint level. For example, selecting the class CTS with the
constraint level 2 forms the problem CTS2. The 20 instances
and their constraints are summarized in Table III along with
their dimensionality and the search space definition. It is noted
that all constraints are independent of the selected objectives,
except for the minimum torque excess constraint, for which
two different requirements exist.

C. Creating variants of the proposed MODAct instances

Since MODAct is a framework, it can generate many other
benchmark problems. An interesting first step would be to
change the number of gear stages k. This not only increases
the size of the search space, but also affects the constraints,

e.g. it becomes harder to fit all gears within the same bounding
box constraint. The specified operating points can be adjusted.
In addition, constraints can be changed – e.g. other bounding
box geometries, or different output shaft coordinates – and new
trade-offs can be explored – e.g. safety factor and efficiency.
All these changes require minimal to no domain knowledge
and allow to significantly change the benchmark problems to
generate easier but also more difficult problems.

IV. MULTI-OBJECTIVE CONSTRAINT LANDSCAPE
ANALYSIS

Calculating the objectives and constraints of such an ac-
tuator involves several steps. It is therefore not straight-
forward to predict their mathematical model characteristics.
Thus, MODAct problems need to be analyzed with metrics
characterizing the effect of the constraints on both the search
and objective spaces.

This section presents the metrics for the constraint landscape
analysis introduced by [26], as well as additional methods
suited for multi-objective problems. The analysis relies on
both repeated independent uniform samplings and progressive
random walks [28] of the decision space.

Definition 1. Given an independent uniform sampling U ⊂ S,
the FsR is defined as:

FsR :=
|{u ∈ U | feasible(u)}|

|U|
(9)

where feasible(x) is an indicator function indicating if a
solution x is feasible, i.e. CV (x) = 0.

Definition 2. Given a sequence of s samples W generated by
a random walk of s− 1 steps
W = {w1,w2, . . . ,ws}, the RFB× is defined as:

RFB× :=
1

s− 1

s−1∑
i=1

χ(i) (10)

χ(i) =

{
0 if feasible(wi) = feasible(wi+1)

1 otherwise
(11)

where the helper function χ indicates when the feasibility
boundary is crossed.

The RFB× metric should be high for a disjoint feasible
space and low for a contiguous feasible space. Yet, the possible
values of RFB× also depend on the number of feasible points
sf encountered during a walkW , thus making the comparison
between functions difficult. In order to compare, one would
need to know, given the ratio of encountered feasible points
per walk, how disjoint the space is. In other words, one wants
to identify the maximum possible RFB× and define this as
an upper bound for a given ratio sf/s. In general, this is
equivalent to trying to spread out the feasible or infeasible
points (depending on which ones are the minority) in a
sequence to maximize the number of transitions. Following
this approach, it can be shown that the upper bound of RFB×
for a given walk is:

RFB×,max =
2

s− 1
·min{sf , s− sf ,

s− 1

2
} (12)
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TABLE III
SUMMARY OF THE 20 FUNCTIONS OF MODACT INCLUDING DETAILS ABOUT THEIR CONSTRAINTS AND THE SEARCH SPACE
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(6
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(1
)
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O
ut

pu
t

sh
af

t
(1

)

Search space bounds

[
mFF,Rscale

Zx11, Zx12,m1, b1, d1, γ1,

Zx21, Zx22,m2, b2, d2, γ2,

Zx31, Zx32,m3, b3, d3, γ3
]

CS1 1 20 2 7 0 Yes ≥ −0.001 No No No x(L) =
[
0, 0.3,

9, 30, 0.3, 5,−20,−π,
9, 30, 0.3, 5,−20,−π,
9, 30, 0.3, 5,−20,−π

]
x(U) =

[
5− 10−6, 2,

41− 10−6, 81− 10−6, 1, 15, 20, π,

41− 10−6, 81− 10−6, 1, 15, 20, π,

41− 10−6, 81− 10−6, 1, 15, 20, π
]

CS2 2 20 2 8 0 Yes ≥ −0.001 Yes No No
CS3 3 20 2 10 0 Yes ≥ −0.001 Yes Yes No
CS4 4 20 2 9 0 Yes ≥ −0.001 Yes No Yes

CT1, CTS1,
CTSE1, CTSEI1 1 20 2, 3, 4, 5 7 0 Yes ≥ −0.599 No No No

CT2, CTS2,
CTSE2, CTSEI2 2 20 2, 3, 4, 5 8 0 Yes ≥ −0.599 Yes No No

CT3, CTS3,
CTSE3, CTSEI3 3 20 2, 3, 4, 5 10 0 Yes ≥ −0.599 Yes Yes No

CT4, CTS4,
CTSE4, CTSEI4 4 20 2, 3, 4, 5 9 0 Yes ≥ −0.599 Yes No Yes

This upper bound is used to define the normalized ratio of
feasible boundary crossing (nRFB×):

nRFB× =

{
0 if RFB× = 0

RFB×
RFB×,max

otherwise
(13)

An nRFB× value of 1 is obtained for walks in the search space
that are as disjoint as possible given their sf/s ratio.

For the analysis of the objective space, two new metrics
are introduced: PFd and PFcv. The main idea is to capture
the interactions between the image in the objective space of
randomly selected points in the search space and the Pareto
fronts. Both metrics rely on the previously obtained aggregated
set of samples L = U1 ∪ . . . ∪ W1 ∪ ... and the Pareto front
PF∗ of the problem.

PFd is constraint independent and represents the average
minimal distance from the Pareto front to the cloud of points
formed by f(L). It measures the ease of randomly generating
points near the Pareto front. In order to make it compa-
rable between functions, the points in the objective space
are normalized using the ideal z∗ and nadir znad vectors of
PF∗, leading to the normalized objective function fn and the
normalized Pareto front PF∗n. PFd corresponds to the inverted
generational distance (IGD) [35] between PF∗n and fn(L).

Definition 3. Given a set of samples L and their normalized
image fn(L) and given the normalized Pareto front PF∗n, PFd
is defined as:

PFd :=
1

|PF∗n|
∑

z∈PF∗
n

min
l∈fn(L)

‖z − l‖2 (14)

where ‖·‖2 is the Euclidian norm.

PFcv measures the average constraint violation CV value of
neighbors of the Pareto front in the sample set. This represents
the sensitivity in terms of constraints of solutions on the Pareto
front.

Definition 4. Given a set of samples L, the Pareto front PF∗
and K the number of neighbors to consider, PFcv is defined
as:

PFcv :=
1

CV95|PF∗|
∑

z∈PF∗

1

K

∑
x∈B(z,K)

CV (x) (15)

where CV95 is the 95th percentile of the CV values found in
L and B(z,K) is the set of the K closest neighbors of z in
L.

V. METHODS OF THE NUMERICAL INVESTIGATIONS

MODAct problems are compared to five groups of bench-
mark problems identified from literature in Section II: the
CTP, the CF, the MW and some DAS-CMOP functions and
two real-world like problems (water and car-side impact).
The comparison is done based on the presented constraint
landscape analysis approach and on a convergence study. The
next sections present the parameters used for the various steps.

A. Constraint landscape analysis

Both uniform samplings and progressive random walks have
been performed using the parameters mentioned in [26]: 30
independent uniform sampling U of |U| = 1000n points and
30n independent progressive random walks W of 1000 steps
(|W| = s = 1001) each with maximum step size of 1% of the
decision space. The reported FsR, RFB× and nRFB× scores
are obtained by averaging over all independent samplings.

The PFd and PFcv metrics are calculated with the best-
known Pareto front obtained from the convergence study
when the true Pareto front is unknown. The K = 20 closest
neighbors are considered for PFcv.

B. Convergence study

In addition to these characteristics, the main interest is
to investigate how well these design optimization problems
can be solved and understand how the different constraint
levels influence convergence. This is achieved by performing
a convergence study where the problems are compared among
each other and against two kinds of optimizers: the commonly
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TABLE IV
PARAMETERS USED TO CONFIGURE EACH RUN OF NSGA-II, NSGA-III

AND C-TAEA

Parameter NSGA-II/III C-TAEA

Population size µ 200 210 or 220 (m = 4)

Number of function (i.e.
solution) evaluations 300 000

Mutation ηm 20
Mutation rate 1/n
Crossover ηc 15
Crossover probability (CXPB) 0.9

used algorithms NSGA-II [10] and NSGA-III [11] on one side
and C-TAEA [12] a recent algorithm developed specifically
to tackle CMOPs on the other side. NSGA-II and NSGA-III
follow a feasibility first approach and rely in the survival step
on the constrained-dominance principle (CDP) introduced in
[10]:

Definition 5. Given two solutions x1 and x2, x1 is said to
constrained-dominate x2, if one of the following is true:

1) x1 is feasible and x2 is not;
2) x1 and x2 are infeasible and CV (x1) < CV (x2);
3) x1 and x2 are feasible and x1 (Pareto-)dominates x2.

C-TAEA maintains two separate archives – one for diversity,
the other for convergence – and has a special restricted mating
approach to balance between the two.

The study is performed using pymoo [36]. NSGA-II is used
for all problems with m = 2 and NSGA-III for all problems
with more objectives. Each optimization is performed 30 times
with the parameters specified in Table IV, following common
practice for these algorithms. The number of reference direc-
tions for NSGA-III is chosen as close to the population size,
while following Das and Dennis’s approach [37]. The same
approach is used for C-TAEA, except the population size and
number of reference directions are set to the same value. An
unbounded external archive (UEA) is added to the algorithms,
as recommended in [38], to collect all feasible non-dominated
solutions along the optimization.

For MODAct problems, the solutions of the archives from
all runs are aggregated and sorted to determine the best-known
Pareto front. The estimated ideal z∗ and nadir znad points are
collected to provide per-problem front normalization.

The convergence and diversity are evaluated with the hy-
pervolume indicator [39]. In particular, the exact and fast
implementations by the Walking-Fish Group are used [40],
[41]. Since the objective functions of the various problems
have different scales and since there is a mix of minimiza-
tion and maximization objectives, the Pareto front and the
archives are transformed into minimization only problems and
normalized with the corresponding z∗ and znad. Only then the
hypervolume is calculated using a common reference point
r = (1.1, . . . , 1.1)T . Finally, the comparison is made through
the relative hypervolume error ∆HVn (16) with respect to the
best-known Pareto front:

∆HVn =
HV (PF∗m,n, r)−HV (Am,n, r)

HV (PF∗m,n, r)
(16)

Fig. 2. Best-known Pareto fronts for (A) CS and (B) CT problems
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Fig. 3. Best-known Pareto fronts for CTS problems

where A denotes a given external archive and the subscript m
that the problems have been converted to minimization.

For the statistical difference between optimization algo-
rithms, the non-parametric Wilcoxon rank-sum test with the
null hypothesis that all algorithms are equal is applied with a
confidence interval of 99%.

VI. RESULTS AND DISCUSSION

A. Design trade-offs and constraints

The analysis of MODAct problems starts by looking at some
of the best-known Pareto fronts. All best-known Pareto fronts
can be downloaded [42]. Fig. 2 shows the best-known Pareto
fronts for CS and CT problems, while Fig. 3 represents the
CTS problems. The best-known Pareto fronts of CS problems
consist of a smooth convex segment, while CT problems
have several step-like disconnected segments. CTS problems
combine the two features to form a complex surface with
concave/convex and disconnected parts.

The discontinuities are indeed expected for these design
problems since some variables represent discrete physical
choices. In particular, the motor selection is dominating these
effects. With different cost and power ranges, the motor
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Fig. 4. Best-known Pareto front for CTSEI3, for rendering questions, the
numbers of points displayed has been reduced by eliminating points that were
too close to each other

designs do not overlap, leading to the visible steps. This
feature is common in design problems and should therefore
also appear in benchmark problems. For engineers, this is of
particular interest since these steps imply important design
trade-offs.

Looking more closely at the effects of the constraints, it
can be noticed, that constraint levels 2 and 4 slightly shift
the found fronts towards higher costs compared to level 1.
Constraint level 3 is the most restrictive: the limit on the size
of the bounding box of the actuator does not allow large gears
or motors, which significantly reduces the available options.
While the impact is limited in the objective space, this is not
the case in the decision space. An analysis of neighbors in
the objective space between CT1 and CT2 confirms important
differences, mostly on the number of teeth of the wheels Zi2
and the spatial positioning variables di and γi.

For problems with more objectives, the best-known Pareto
front of CTSEI3 is shown as an example in Fig. 4 projected
into the various objective planes. It shows that there are indeed
up to five competing objectives with different shapes.

B. Convergence analysis

In a second step, the ease of convergence and the repeata-
bility are compared. Fig. 5 represents box plots of the obtained
relative hypervolume errors (16) over the 30 optimization runs
for each problem by NSGA-II/III and by C-TAEA. Starting
with MODAct problems, the results suggest the following:

1) The proposed instances pose a wide range of optimization
challenges to NSGA-II/III and C-TAEA.

2) Within the same classes, constraint levels 1 and 2 are
generally equally well solved with rare outliers that may
exhibit early convergence to local optima.

3) Constraint levels 3 and 4 are increasingly difficult and the
various optimization runs achieve very different levels of
convergence.

4) There is also a clear trend of increasing hypervolume
error with the number of objectives, but this is certainly
related to the nature of the indicator itself.

5) The more restrictive threshold on the minimum torque
excess of CS problems seems to negatively impact con-
vergence for all constraint levels. In particular, C-TAEA
is barely able to find any solutions within the boundaries
of the reference point for CS3 and CS4.

In comparison, the CTP, car-side impact, water, most MW
and DAS-CMOP8 problems are effectively solved by the
considered algorithms. MW10, MW11 and MW13 are the
most difficult of MW and can be compared to MODAct
constraint levels 1 and 2. The CF family offers a broader range
of challenging problems. The findings that the biobjective
problems CF3, CF5 and CF7 are the hardest are consistent
with the outcomes of the CEC2009 MOEA Competition
[43]. Among the three-objective problems, CF8 and CF10 are
the most challenging in particular for NSGA-III. The DAS-
CMOP3 problems seem to be challenging for both algorithms.
DAS-CMOP6 problems are effectively solved by C-TAEA,
while NSGA-II struggles for DAS-CMOP6 11 and DAS-
CMOP6 12.

In terms of algorithms, NSGA-II/III is overall significantly
better than C-TAEA (better on 30 problems, no difference
on 18 and worse on 17), despite using a simple constraint
handling strategy. NSGA-II/III is always better for CTP and
for the car-side impact problem, although the difference is
minor. The results are more balanced for the other benchmark
problems. For the MW test suite, C-TAEA performs better on
the difficult problems. C-TAEA also performs better on the
three-objective CF problems and is on a par for biobjective
problems. The opposite is true for DAS-CMOP: NSGA-III is
better for three-objective problems, while C-TAEA shows solid
performance on biobjective instances. Finally on MODAct
problems NSGA-II/III has a clear advantage for biobjective
problems and is at least as good as C-TAEA otherwise.

In general, the performance of NSGA-II/III and C-TAEA
is insufficient on MODAct instances with constraint levels
3 and 4, although they represent very common and simple
mechanical design problems. The observed large variance
of the optimization outcomes has important practical con-
sequences. Considering problems CS3 and CS4, more than
75% of the optimization runs of NSGA-II obtain approximate
Pareto fronts with a hypervolume of 50% or smaller than
the best-known Pareto fronts, while C-TAEA fails to find
interesting solutions. As an example, the best run of NSGA-
II and of C-TAEA along with two optimization runs are
compared to the best-known Pareto front for problem CS4
in Fig. 6 to illustrate the large difference in the proposed
solutions with a lack of convergence and diversity. Using
partially converged solutions for decision-making can lead to
significantly different engineering outcomes.

In order to better understand the optimization process of
MODAct problems, the evolution of the relative hypervol-
ume error of the external archives of NSGA-II, C-TAEA
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Fig. 5. Box plot of the relative hypervolume errors ∆HVn of the external archives obtained for each problem by NSGA-II/NSGA-III versus C-TAEA, where
the ∗ or † after the function name is used to indicate that C-TAEA is, respectively, significantly worse or better than NSGA-II/NSGA-III

Fig. 6. Comparison of the approximate Pareto fronts obtained by the best
runs for NSGA-II and C-TAEA and two runs achieving a ∆HVn of 0.9 and
0.5 against the best-known Pareto front for CS4

and NSGA-II without constraint handling are compared in
Fig. 7. For all four problems, the unconstrained optimization
clearly fails to get many feasible solutions, confirming that
the constraints play a key role in MODAct problems. While
for problems CT1 and CT2 the optimization budget is more
than sufficient, better results may be possible for CT3 and
CT4. Yet, while the mean relative hypervolume error seems to
be decreasing, the spread remains almost constant (NSGA-II)
or increasing (C-TAEA). Running the optimization algorithms
longer might thus not necessarily address the repeatability
issue. It is also interesting to note that while CT3 and CT4 are
challenging problems, feasible solutions are rapidly found: on
average after 800 evaluated solutions for CT3, and after 2000
for CT4.

C. Link between convergence and constraints

Finally, the objective is to use the results from the constraint
landscape analysis to identify the underlying characteristics

Fig. 7. Evolution of the median relative hypervolume error including 5th and
95th percentiles for CT problems comparing: NSGA-II with the constrained-
dominance strategy (CDP-NSGA-II), C-TAEA and NSGA-II discarding con-
straints (Unconstrained NSGA-II)

that affect convergence most and how the newly introduced
problems differ from the existing benchmarks functions.

The obtained metrics for all problems are summarized in
Table V. To begin, the advantages of nRFB× are evaluated.
CF1, CTP6 and CTP7 have the three highest RFB× scores.
They also have an FsR close to 0.5. For problems with a high
or a low FsR, the definition of RFB× necessarily decreases
its possible values, thus masking the level of discontinuity

Citation information: DOI 10.1109/TEVC.2020.3020046, IEEE Transactions on Evolutionary Computation



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE V
CALCULATED METRICS RESULTING FROM THE CONSTRAINT LANDSCAPE

ANALYSIS

Function FsR RFB× nRFB× PFd PFcv

CS1 0.0022 0.0016 0.1155 0.0015 0.4158
CT1 0.0342 0.0278 0.3081 0.0071 1.7115
CTS1 0.0343 0.0281 0.3095 0.0788 0.8317
CTSE1 0.0342 0.0283 0.3050 0.1235 0.7521
CTSEI1 0.0347 0.0287 0.3075 0.1369 1.2519
CS2 0.0010 0.0007 0.0593 0.0021 0.4703
CT2 0.0160 0.0156 0.3097 0.0068 1.6274
CTS2 0.0158 0.0158 0.2947 0.0796 0.7688
CTSE2 0.0160 0.0161 0.3075 0.1242 0.7226
CTSEI2 0.0162 0.0161 0.3110 0.1411 1.1255
CS3 0.0000 0.0000 0.0000 0.0012 0.6763
CT3 0.0000 0.0001 0.0126 0.0029 2.2518
CTS3 0.0000 0.0001 0.0112 0.0551 0.9973
CTSE3 0.0000 0.0001 0.0178 0.0643 1.5531
CTSEI3 0.0000 0.0001 0.0259 0.0336 8.4287
CS4 0.0000 0.0000 0.0000 0.0013 0.7802
CT4 0.0000 0.0000 0.0000 0.0039 0.7694
CTS4 0.0000 0.0000 0.0000 0.0483 0.7807
CTSE4 0.0000 0.0000 0.0000 0.0569 0.9021
CTSEI4 0.0000 0.0000 0.0000 0.0277 1.6211

CF1 0.5199 0.1539 0.2007 0.0301 0.7801
CF2 0.9942 0.0033 0.1682 0.1114 0.0116
CF3 1.0000 0.0000 0.0000 1.9014 0.0000
CF4 0.5001 0.0154 0.0169 0.3835 0.1432
CF5 0.5068 0.0080 0.0090 2.8356 0.0574
CF6 0.3056 0.0089 0.0222 0.4670 0.0306
CF7 0.3151 0.0169 0.0325 2.5682 0.0896
CF8 0.0042 0.0012 0.0427 0.7449 0.1984
CF9 0.1597 0.0340 0.1259 0.3445 0.2047
CF10 0.0001 0.0001 0.0298 2.8237 0.1391

CTP1 0.9972 0.0048 0.7769 0.0429 0.0001
CTP2 0.9899 0.0100 0.4902 0.0505 0.0771
CTP3 0.9892 0.0100 0.4659 0.0481 0.0653
CTP4 0.9656 0.0287 0.4402 0.0363 0.5128
CTP5 0.9893 0.0099 0.4695 0.0509 0.0117
CTP6 0.4888 0.4108 0.4208 0.0206 0.0133
CTP7 0.6458 0.4171 0.5856 0.0220 0.0222

DAS-CMOP3 9 0.3337 0.0999 0.1496 0.7515 0.4267
DAS-CMOP3 10 0.0000 0.0024 0.0795 0.0241 0.0002
DAS-CMOP3 11 0.9996 0.0137 0.1214 0.5173 0.1614
DAS-CMOP3 12 0.0000 0.0001 0.0177 0.0138 0.0065
DAS-CMOP6 9 0.3330 0.1000 0.1501 23.7690 0.3444
DAS-CMOP6 10 0.0000 0.0000 0.0000 17.5318 0.1394
DAS-CMOP6 11 1.0000 0.0000 0.0000 14.7336 0.0000
DAS-CMOP6 12 0.0000 0.0000 0.0000 22.9593 0.1433
DAS-CMOP8 9 0.1114 0.0614 0.2835 22.0217 0.6104
DAS-CMOP8 10 0.0000 0.0000 0.0000 21.0716 0.1383
DAS-CMOP8 11 1.0000 0.0000 0.0000 22.1774 0.0000
DAS-CMOP8 12 0.0000 0.0000 0.0000 21.3521 0.1358

MW1 0.0000 0.0000 0.0000 8.9253 0.5888
MW2 0.0000 0.0000 0.0000 0.6848 0.0549
MW3 0.0000 0.0000 0.0000 0.5878 0.0704
MW4 0.0000 0.0000 0.0000 4.3189 0.6268
MW5 0.0000 0.0000 0.0000 7.8080 0.3784
MW6 0.0000 0.0000 0.0000 0.6881 0.0079
MW7 0.0000 0.0000 0.0000 0.4555 0.0178
MW8 0.0000 0.0000 0.0000 0.8002 0.0080
MW9 0.0000 0.0000 0.0000 4.2789 0.0246
MW10 0.0000 0.0000 0.0000 0.7595 0.0003
MW11 0.0000 0.0000 0.0017 0.1222 0.0000
MW12 0.0000 0.0000 0.0000 4.4956 0.3126
MW13 0.0018 0.0029 0.1765 0.0587 0.0000
MW14 0.0003 0.0002 0.0391 0.1815 0.0218

Car-side impact 0.1827 0.0048 0.0284 0.1054 0.0281
Water 0.9198 0.0058 0.0612 0.0505 0.0012

of small infeasible or feasible spaces. In such cases, the
nRFB× metric acts as an amplifier of the scores through
the normalization. The nRFB× values indicate that all CTP
problems have a relatively disjoint search space, which is
known a priori from their definition [17]. MODAct problems
have nRFB× values ranging between the CTP and the CF
problems, suggesting a rather disjoint search space. The same
applies to DAS-CMOP problems with difficulty triplet 9, DAS-
CMOP3 11 and MW13. nRFB× values can also remain low
such as for the car-side impact and water problems, suggesting
a contiguous feasible space. It is noted that some limitations
remain, in particular for highly feasible or infeasible search
spaces, where boundaries are hard to find. This is the case for
the rest of DAS-CMOP and MW.

In order to get a better overview of the differences between
functions and function groups, each problem is shown in the

Fig. 8. Map of the problems based on their (A) FsR-nRFB× and (B) PFd-
PFcv scores grouped by constraint levels or test suites

FsR-nRFB× plane, Fig. 8(A), and in the PFd-PFcv plane,
Fig. 8(B). The FsR-nRFB× plane confirms the initial analysis
of Table V. In addition, the following points are highlighted:

1) MODAct, MW, DAS-CMOP with triplets 10 and 12, CF8
and CF10 are all located near FsR = 0.

2) The feasibility ratio of MODAct problems is decreasing
with increasing constraint level.

3) The CTP family has a unique signature with high FsR
and high nRFB×.

Yet, there is no clear relationship between these metrics and
convergence. In particular, the MW test suite is a good exam-
ple that very low FsR is not directly related to convergence
challenges.

Analyzing Fig. 8(B), the newly introduced metrics exhibit
the following problem clusters:

1) MODAct problems in the low PFd, high PFcv zone;
2) three groups with high PFd: (i) DAS-CMOP6 and DAS-

CMOP8, (ii) MW1, MW4, MW5, MW9 and MW12 and
(iii) CF3, CF5, CF7 and CF10;

3) a large group with low PFd and low PFcv, including most
CTP, the car-side impact and water problems, MW11,
MW13 and DAS-CMOP3 12.

Further, for the problem class CS, there is a relation between
increasing PFcv values and decreasing convergence as shown
in Fig. 5. Other MODAct problems do not exhibit the same
trend across constraint levels. The difficult CF functions (CF3,
CF5, CF7 and CF10) have a high PFd. The opposite is
true for the most difficult DAS-CMOP and MW problems.
Hence, these metrics seem to capture different optimization
challenges, but certainly not all of them.

In order to better understand the qualitative difference
between PFd and PFcv scores and convergence, four particular
functions – CT3 (low PFd, high PFcv), CF7 (high PFd, low
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Fig. 9. Color-maps of the normalized constraint violation values as a function
of the objective values based on the random samples in L for CT3, CF7, DAS-
CMOP3 12 and MW11 with their respective (best-known or true) Pareto front
in red dots. For the generation of the color-map, the constraint violation values
of points very close to each others in the objective space are aggregated using
the lowest value

PFcv), DAS-CMOP3 12 (low PFd, low PFcv) and MW11
(low PFd, low PFcv) – are further analyzed. Fig 9 shows
color-maps of the minimum constraint violation values in
the objective space based on the samples from L along
with the respective best-known (CT3) or true Pareto front.
It becomes apparent that PFd measures the ease of randomly
sampling points in the vicinity of the Pareto front and PFcv
the constraint violation of the closest known points. These
particular problems represent four different situations:

1) While it is possible to find samples near the best-known
Pareto front for CT3, it is harder to find feasible solutions.

2) For CF7, the sampling near the Pareto front is challeng-
ing, but it seems easier to find feasible solutions scattered
all over the objective space, in particular in the direction
of the Pareto front.

3) Random samples of DAS-CMOP3 12 are located in a
narrow band reaching to the Pareto front and some
constraints clearly guide the search process towards the
optimum. Finding points outside this band is a clear
challenge for diversity.

4) More uniformly distributed feasible samples near the
Pareto front can be found for MW11 and here as well,
some constraints clearly guide in the right direction.

The optimization challenges of the four situations are dif-
ferent and might thus require a different set of tools to be
addressed efficiently. CF7 might, for example, be better solved
by specific search operators regardless of constraints, while
a specific constraint handling strategy or diversity generating
operators would be needed for the others. And indeed, C-
TAEA was better at solving DAS-CMOP3 12 and MW11.

Finally, an additional specificity of MODAct problems is
their high number of constraints. Fig. 10(A) represents the
relative share of solutions from the random samples L grouped

by number of simultaneously violated constraints for all the
investigated problems with more than two constraints. The
results suggest that MODAct problems are heavily constrained
and have at least 50% of the search space where at least two
constraints are simultaneously violated, or even at least three
for the more challenging problems. For these levels, up to five
constraints can be violated simultaneously in a non negligible
part of the search space.

With that respect, the car-side impact problem is compa-
rable to problems with constraint level 1. The search space
of the water problem, despite its six constraints, is mostly
unconstrained and when constrained, there is only one violated
constraint. DAS-CMOP problems have 11 or 7 constraints
most of which, however, are not simultaneously violated. The
exceptions are DAS-CMOP problems with triplet 12, which
have up to three simultaneous violations. MW problems have
less constraints, but nonetheless, MW10 and MW11 show two
violated constraints throughout the samples.

This analysis is based on the whole search space and is
therefore not necessarily representative of what an optimizer
would encounter during its search. Fig. 10(B) shows the aver-
age share of simultaneously violated constraints encountered
during the optimizations performed by NSGA-II/III. Following
the results reported by Tanabe and Oyama [9], only a small
fraction of the generated solutions for the car-side impact and
water problems – about 5.4% and 7.0% respectively – yield
one or more simultaneously violated constraints. While the
number is similar to what is shown in Fig. 10(A) for the water
problem (8.1%), the difference is significant for the car-side
impact problem (80%) and suggests that in practice, not all
constraints are as critical as expected.

This reduction is also observed to a more limited extent
for the other problems. Yet, three and more simultaneous
constraint violation have only been encountered on MODAct
problems with constraint levels 3 and 4 and their share still
represents 5-10%. This is a key and unique feature algorithms
have to be able to deal with.

VII. CONCLUSION

In this paper, the design of electro-mechanical actuators
has been used to derive realistic benchmark problems for
constrained multi-objective optimization. The proposed new
test suite MODAct is composed of 20 problems built around
four different constraint levels and up to five objectives.
With discontinuities in the objective space and a focus on
constraints, these problems are representative of many com-
mon mechanical design applications. In addition, a constraint
landscape analysis method applicable to CMOPs has been
presented. It relies on existing metrics (FsR and RFB×) as
well as three new ones (nRFB×, PFd and PFcv).

MODAct has been studied through this constraint landscape
analysis approach and by running a convergence study with
NSGA-II, NSGA-III and C-TAEA. The same methods were
applied to existing benchmark problems from literature: CTP,
CF, car-side impact, water, MW and selected DAS-CMOP.
The results have been compared to highlight the differences,
leading to the following observations:

Citation information: DOI 10.1109/TEVC.2020.3020046, IEEE Transactions on Evolutionary Computation



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

Fig. 10. (A) Relative share of samples from L and (B) average share of evaluated solutions by NSGA-II or NSGA-III by number of simultaneously violated
constraints for all considered problems with more than two constraints

• For MODAct, the convergence quality of NSGA-II,
NSGA-III and C-TAEA decreases as tighter constraints
are added, up to the point where finding a front close to
the optimum is rather unlikely. As such, MODAct covers
a wide range of complexity levels.

• While C-TAEA demonstrates better performance than
NSGA-II or NSGA-III on many existing benchmark
problems, this is not the case for MODAct.

• MODAct problems are characterized by a very small FsR.
However, this analysis suggests that a low FsR alone does
not necessarily imply difficult problems for optimization
algorithms.

• Certain combinations of PFd and PFcv highlight poten-
tially different optimization challenges: finding feasible
solutions, promoting diversity and moving towards the
Pareto front. Yet, they might not all be related to the
constraints.

Finally, the number of simultaneously violated constraints
in solutions generated along the various optimizations further
emphasized the importance of the constraints and their com-
binations in MODAct problems, since a large majority of the
found solutions are violating several constraints.

The fact that established and modern optimization algo-
rithms struggle with constraints clearly is an important mo-
tivation for further research on constrained multi-objective
optimizers. With its tunable level of complexity (objectives
and constraints), the MODAct test suite is well designed
to promote advanced constraint handling strategies and the
development of the required tools to further push multi-
objective optimization in engineering problems.

Depending on their priorities, researchers can focus on a
single class and multiple constraint levels or explore multiple
objectives with fewer constraint levels. The framework also
offers a pathway to explore the impact of a larger search
space or more challenging problems through new constraint
combinations as algorithms evolve.

Future work should evaluate more existing and new op-

timization algorithms and constraint handling strategies to
identify features that help efficiently solve MODAct and other
problems. In addition, additional constraint analysis tools are
needed to continuously improve the understanding of new and
published constrained multi-objective problems. This valuable
information should then inspire future algorithm development.
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